CYCLING PERFORMANCE TIPS

Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis.

Med Sci Sports Exerc 1987 Oct;19(5):491-6

Blom PC, Hostmark AT, Vaage O, Kardel KR, Maehlum S.

Department of Physiology, National Institute of Occupational Health, Oslo, Norway.

The effect of repeated ingestions of fructose, sucrose, and various amounts of glucose on muscle glycogen synthesis during the first 6 h after exhaustive bicycle exercise was studied. Muscle biopsies for glycogen determination were taken before and after exercise, and every second hour during recovery. Blood samples for plasma glucose and insulin determination were taken before and after exercise, and every hour during recovery. When 0.35 (low glucose: N = 5), 0.70 (medium glucose: N = 5), or 1.40 (high glucose: N = 5) g.kg-1 body weight of glucose were given orally at 0, 2, and 4 h after exercise, the rates of glycogen synthesis were (mean +/- SE) 2.1 +/- 0.5, 5.8 +/- 1.0, and 5.7 +/- 0.9 mmol.kg-1.h-1, respectively. When 0.70 g.kg-1 body weight of sucrose (medium sucrose: N = 5), or fructose (medium fructose: N = 7) was ingested accordingly, the rates were 6.2 +/- 0.5 and 3.2 +/- 0.7 mmol.kg-1.h-1. Average plasma glucose level during recovery were similar in low glucose, medium glucose, and high glucose groups (5.76 +/- 0.24, 6.31 +/- 0.64, and 6.52 +/- 0.24 mM), while average plasma insulin levels were higher with higher glucose intake (16 +/- 1, 21 +/- 3, and 38 +/- 4 microU.ml-1).


Effects of glucose or fructose feeding on glycogen repletion in muscle and liver after exercise or fasting.

Ann Nutr Metab 1987;31(2):126-32

Conlee RK, Lawler RM, Ross PE.

In athletics, muscle and liver glycogen content is critical to endurance. This study compared the effectiveness of glucose and fructose feeding on restoring glycogen content after glycogen was decreased by exercise (90-min swim) or fasting (24 h). After 2 h of recovery from either exercise or fasting there was no measurable glycogen repletion in red vastus lateralis muscle in response to fructose. In contrast, glucose feeding induced a similar and significant carbohydrate storage after both depletion treatments (8.44 mumol X g-1 X 2 h-1). In the liver, following 2 h of recovery, the rates of glycogen storage were similar after either glucose or fructose ingestion, but fasting caused a greater rate of repletion (83 mumol X g-1 X 2 h-1) than exercise (50 mumol X g-1 X 2 h-1). After 4 h of recovery fructose-fed exercised animals had the highest glycogen concentration (165 mumol X g-1) followed by the glucose-fed exercised group (119 mumol X g-1). These values were 50 and 36%, respectively, of that measured in the normal-fed liver (327 mumol X g-1). In contrast, liver glycogen values in the fasted group decreased between the 2nd and 4th hour of recovery in response to both feeding regimens. From these results we conclude that fructose is a poor nutritional precursor for rapid glycogen restoration in muscle after exercise, but that both glucose and fructose promote rapid accumulation of glycogen in the liver.


Questions on content or suggestions to improve this page are appreciated.

Cycling Performance Tips
Home | Table of Contents | Local Services/Information